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Accommodating Linkage Disequilibrium
in Genetic-Association Analyses via Ridge Regression

Nathalie Malo,1,2 Ondrej Libiger,1,2 and Nicholas J. Schork1,2,*

Large-scale genetic-association studies that take advantage of an extremely dense set of genetic markers have begun to produce very com-

pelling statistical associations between multiple makers exhibiting strong linkage disequilibrium (LD) in a single genomic region and

a phenotype of interest. However, the ultimate biological or ‘‘functional’’ significance of these multiple associations has been difficult

to discern. In fact, the LD relationships between not only the markers found to be associated with the phenotype but also potential func-

tionally or causally relevant genetic variations that reside near those markers have been exploited in such studies. Unfortunately, LD,

especially strong LD, between variations at neighboring loci can make it difficult to distinguish the functionally relevant variations

from nonfunctional variations. Although there are (rare) situations in which it is impossible to determine the independent phenotypic

effects of variations in LD, there are strategies for accommodating LD between variations at different loci, and they can be used to tease

out their independent effects on a phenotype. These strategies make it possible to differentiate potentially causative from noncausative

variations. We describe one such approach involving ridge regression. We showcase the method by using both simulated and real data.

Our results suggest that ridge regression and related techniques have the potential to distinguish causative from noncausative variations

in association studies.
Introduction

The availability of cost-efficient genotyping technologies

and the development of very dense maps of polymorphic

loci within the human genome have paved the way for

large-scale genetic-association studies. These studies,

which include comprehensive whole-genome association

(WGA) studies, exploit linkage disequilibrium (LD) rela-

tionships between variations at marker loci genotyped on

a large number of subjects and variations at loci that reside

in the vicinity of these marker loci.1,2 Many of these stud-

ies have produced findings that are very compelling from

a statistical point of view and have generated test statistics

quantifying the association strength between multiple loci

within particular genomic regions and specific phenotypes

with p values as small as 10�8 or 10�12.1,2 As compelling as

these statistical associations are, however, the fact that

multiple markers within single genomic regions that are

in strong LD—and hence highly correlated—are associated

with a particular phenotype makes it difficult to separate in

these regions the individual variations that are likely to be

causally associated to the phenotype of interest from those

that are simply in LD with causal loci.

This phenomenon and problem are not particularly new

to genetic analysis because the inability to resolve the pre-

cise location of an offending mutation has plagued tradi-

tional pedigree and sibling-pair-based linkage studies, as

well as genealogically informed haplotype studies, for

years as a result of the limited number of recombination

events that can be exploited in such studies.3–5 Although

the use of (predominantly) unrelated individuals and the

smaller intermarker distances for which strong LD is ob-
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served in general population-based case-control associa-

tion studies is thought to help overcome this problem, re-

cent studies suggest that this problem still, albeit within

the smaller genomic regions suggested by these studies, is

an area of concern. The following three recent examples

are cases in point (although there are many others): Easton

et al.6 identified multiple single-nucleotide polymor-

phisms (SNPs) exhibiting strong association with breast

cancer (MIM 114480) in the FGFR2 (MIM 176943) and

TNRC9 (MIM 611416) gene regions and used standard

logistic-regression-analysis procedures to find the most

strongly associated SNPs with breast cancer among the

many that showed association with breast cancer in these

regions; Gudmundson et al.7 identified on chromosome 17

multiple SNPs that appeared to be significantly associated

with prostate cancer (MIM 176807) and also used multiple

logistic regression to resolve the putative ‘‘functionally’’ or

‘‘causally’’ associated variants; and Haiman et al.8 identi-

fied on chromosome 8q24 seven SNPs that appeared to

exhibit independent associations with prostate cancer

after use of logistic regression to resolve their contributions

to prostate cancer risk among other SNPs that exhibited

strong to moderate LD in the same region with these

seven.

The use of multiple regression-like analysis methods in

contexts in which multiple loci are taken as independent

(or predictor) variables with a phenotypic measure taken

as a dependent variable would be appropriate only if the

variations at those loci are not in strong LD. Thus, tradi-

tional regression-analysis models and procedures are highly

problematic when strong LD exists among the variations of

interest that will be taken as independent variables. For
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example, it may be the case that there are multiple, func-

tionally relevant loci that are within a particular genomic

region and that happen to have alleles that are in LD. In

this case, standard regression analyses that do not account

for the multicollinearity (i.e., LD) among the predictor

SNP variables can produce misleading results.9 In addition,

it is known that in instances for which there is moderate-

to-strong multicollinearity among predictor variables, stan-

dard regression analyses break down because of singulari-

ties in matrices requiring inversion involved in relevant

computations (although this can be remedied in some

instances with some numerical tricks).9 Thus, although

regression methods can be useful and appropriate tools

for modeling relationships between genetic variations and

phenotypes of interest, they must be used with caution

in situations in which a researcher is interested in identify-

ing the most likely functionally or causally relevant

SNPs among a number of SNPs that exhibit moderate to

strong LD.

We propose the use of ridge-regression procedures for

accommodating correlations (i.e., LD) between genetic

variations in association studies. Ridge regression was intro-

duced by Hoerl and Kennard10 in 1970 and has been re-

cently used in a number of settings for large-scale data anal-

ysis, such as marker-assisted selection,11 expression-array

analysis,12 and haplotype-association analysis.13 As dis-

cussed in the Material and Methods and Discussion sec-

tions, ridge regression offers many advantages over the

traditional multiple-regression models and standard least-

squares-regression-coefficient estimation procedures. For

example, ridge regression can deal with a number of predic-

tor variables that far exceeds the number of subjects and can

also deal with situations in which the predictors are highly

correlated. Thus, ridge regression has potential in genetic-

association-analyses settings involving multiple variations

in LD with each other for which the goal is to differentiate

functional from nonfunctional SNPs. Other methodologies

have been proposed for this purpose and include condi-

tional haplotype analysis,14 conditional logistic regres-

sion,15 and Hoh’s set-association method.16 However, these

methods do not allow one to simultaneously quantify the

effect of each SNP individually along with the combined

effect of the SNPs in a way that accommodates the LD

between the SNPs.

We first describe the mechanics behind ridge regression

and how ridge regression can be used to account for cor-

related predictor variables such as multiple SNPs in strong

LD; some subset of these SNPs are causally associated

with an independent variable (i.e., phenotype) of interest.

We showcase the utility of the ridge-regression method

by using previously published data involving the

CHI3L2 gene (MIM 601526). We also compare the results

produced by ridge regression to those obtained with tradi-

tional multiple-regression methods via simulation stud-

ies. Finally, we consider limitations of the proposed

ridge-regression approach as well as areas for further

research.
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Material and Methods

The Multiple-Linear-Regression Model
Let X be an n 3 p matrix where p is the number of SNPs (or other

forms of genetic variation) genotyped on a set of n individuals, and

Y be an n-dimensional vector containing phenotype values for

each individual. SNP genotypes can be coded as dummy variables

with homozygotes being assigned a 0.0, heterozygotes being a 0.5,

and opposite homozygotes being a 1.0 under an additive model or,

for models involving dominance or recessive effects, with hetero-

zygotes being assigned a 0.0 or 1.0, respectively. For the analyses

we describe below, we assumed an additive model. Under the usual

linear-regression model: Y¼Xbþ 3, we can obtain estimates of the

regression coefficients b by minimizing the residual sum of

squares:

RSS ¼ ðY �XbÞ0ðY �XbÞ (1)

such that the vector of regression coefficients is estimated by:

b̂MLR ¼ arg minðRSSÞ ¼ ðX0XÞ�1
X0Y (2)

The solution to Equation 2 either can not be obtained or is highly

problematic if (1) p>> n or if (2) some variables are moderately to

strongly correlated, because in this situation, the (X’X) matrix

could be singular and therefore not invertible. In this case, one

must select a subset of variables that are not as strongly correlated

for use in the model. Although it has been suggested in the litera-

ture that a selection of ‘‘target’’ SNPs for ultimate analysis in regres-

sion contexts can be pursued via, e.g., clustering methods, princi-

pal-component analysis, or forward stepwise selection, this

strategy is not ideal because if many SNPs are correlated and one

is chosen for use in an analysis on the basis of its correlation with

others, the chosen SNP may not actually be the functional SNP.

In addition, it could be the case that there exist more than one func-

tional SNP among those that are correlated, such that choosing one

to represent a cluster of correlated SNPs would not reflect the fact

that more than one position in the sequence is phenotypically

relevant. In addition, Frank and Friedman17 have shown that ridge

regression is preferable to principal-component and subset-selec-

tion methods in many contexts. Also, the ‘‘local’’ optima found

by stepwise-regression approaches to predictor variable selection

may not represent the true ‘‘global’’ optimum18 because of the po-

tentially large number of predictor variables (SNPs) that might be

considered. Finally, many methods such as principal-component

and cluster-analysis methods lack ease of result interpretation

and power because each SNP is not tested separately or associated

or provided with a metric—such as regression coefficient—whose

statistical significance can be gauged. In contrast, ridge regression

allowsdirect analysisof all variables (i.e., SNPs or geneticvariations)

in the model and, in addition, quantifies the individual effects of

each of several correlated SNPs, which, as has been pointed out, is

crucial in WGA studies if one is to ultimately identify the most

likely causally associated SNPs with a phenotype.

The Ridge-Regression Model
As an alternative to choosing a subset of SNPs as potential pheno-

type predictors that are meant to represent the effects of variations

in a particular genomic region, ridge regression has the advantage

of including all SNPs in the model and both providing regression

coefficients that can be tested for significance for each SNP indi-

vidually and accommodating potential linkage disequilibrium

among them. Ridge regression has been around since the 1970s
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as a statistical tool used to deal with multicollinearity and to avoid

problems related to small sample size and/or a large number of

predictor variables.19,20 Ridge regression can be viewed as a special

case of ‘‘regularized’’ regression because it puts constraints on the

size of the coefficients to control large variances associated with re-

sulting estimates. In brief, ridge regression works by ‘‘shrinking’’

the effect of redundant variables (e.g., SNPs in strong LD) to zero

by imposing a penalty on the size of their coefficients:

b̂Ridge ¼ ðX0Xþ kIÞ�1
X0Y (3)

where the ridge parameter k> 0 represents the degree of shrinkage.

By adding the term kI, the ridge-regression model reduces multicol-

linearity and prevents the matrix X0X from being singular even if X

itself is not of full rank. Note that if k¼ 0, the ridge-regression coef-

ficients are equal to those from the traditional multiple-regression

model. Ridge regression does not allow any one regression coeffi-

cient to get very large, so it protects against overfitting and usual

high variances associated with correlated coefficients. Although

there is a great deal in the literature on methods of estimating the

value of k, such as generalized cross-validation,21 all of them are

data driven. Finding the optimal method of choosing k is beyond

the goal of this paper. In this paper, we used the original definition

of k provided by Hoerl, Kennard, and Baldwin;22 it is easy to imple-

ment, and, as shown later, performs well.

To test the significance of each coefficient estimated from ridge

regression, one can compute a Wald-test, i.e., dividing the coeffi-

cient estimate by its standard error, which is defined as the

square-root of his variance:

VAR
�
b̂
�
¼
�
W�1X0

��
W�1X0

�0
(4)

where W ¼ ðX0Xþ kIÞ:

Here, the test statistic follows a Student t distribution as in tradi-

tional least-squares-regression-model-based tests of regression co-

efficients.23 However, the number of degrees of freedom used for

inference is assumed to be the number of ‘‘effective degrees of free-

dom,’’ and this is smaller than the number of free parameters in

the model. The efficient number of degrees of freedom is defined

by:

EDF ¼ trace
�

XðX0Xþ kIÞ�1
X0
�
¼ trace

�
ðX0Xþ kIÞ�1

X0X
�

(5)

and it equals the rank of X when k¼ 0. Consequently, the tests are

equivalent to those from a traditional multiple-regression model if

there is no correlation among independent variables; i.e., if the

variables are independent. Note that independent variables could

be centered or standardized prior to the regression analysis, but

the literature is not clear about how such standardization would

improve performance. We find that the use of standardized vari-

ables can give problematic results, so we have not used standardi-

zation in our analyses.

The CEPH Family Gene Expression Data

as an Example Data Set
We applied three analysis methods to SNPs within the CHI3L2

gene and CHI3L2 gene expression as a phenotype24 in order to

compare their performance: single-locus analysis (i.e., standard

regression analysis with a single SNP as a predictor), a standard

multiple-linear-regression model, and a ridge-regression model.

We obtained SNP data collected on 57 unrelated CEPH individuals
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from the International HapMap Project database. These individuals

were chosen by International HapMap Project researchers for mas-

sive, genome-wide genotyping studies25 and were also later used for

assessment of gene expression patterns obtained from immortal-

ized lymphocytes collected on the HapMap subjects.26 We down-

loaded the gene expression via GEO accession number GSE2552.

Our analyses excluded the individual labeled NA06993 in the

gene expression studies because detailed analysis of HapMap data

suggested that the sample associated with this person is likely to

have derived from an unreported relative. We also added data asso-

ciated with the individual labeled NA12056 because gene expres-

sion data for this individual are now available. We ultimately down-

loaded phased, haplotype data that were on the 22 autosomal

chromosomes from the HapMap (phase 1) database and that were

available on the 57 CEPH individuals. We eliminated monomor-

phic SNPs from our analyses. Missing genotypes for particular indi-

viduals were filled in by imputing genotypes with a combination of

available parental genotype data, the most likely combination of

genotypes observed in the regions with the missing genotype

data, and standard haplotype-inference analyses.27 We used the

average of the of log2-transformed gene expression levels associated

with each subject for the phenotype.

Because true functional SNPs in the CHI3L2 gene are unknown,

we also simulated continuous phenotypes by generating a varying

number (1–25) of equally distributed ‘‘functional’’ SNPs among the

26 SNPs of the CHI3L2 region. Phenotypes were generated accord-

ing to a standard normal distribution based on the genotypic infor-

mation at the hypothetical functional loci. To create associations

between the phenotype and CHI3L2 SNPs for each person, we

increased the corresponding phenotype by 2 standard deviations

(SDs) each time that a particular allele was observed at a ‘‘func-

tional’’ locus. A total of 1000 sets of phenotypes were generated

in this manner. For each of the 25 different cases with a fixed num-

ber of ‘‘functional’’ SNPs, we applied the single-locus analysis and

the ridge-regression method to a 1000 sets of simulated pheno-

types. In these simulations, we did not consider traditional multi-

ple regression because the high degree of correlation among the

SNPs in the CHI3L2 generated enormous numerical difficulties in

fitting the model (emphasizing its nonutility as a general method

for identifying functional SNPs from a group of SNPs in LD). Rather

than using an arbitrary p value or significance threshold and

method to correct for multiple testing, we used ROC curves to assess

the sensitivity and specificity of the methods in differentiating

functional from nonfunctional loci. Instead of displaying the

results for each of the 25 different settings (i.e., the 25 different

assumptions about the number of functional loci), we averaged

the ROC curves over the simulated data sets and settings, assuming

the various number of functional loci as described below.

Simulation Study
Our simulation study was divided in two parts. First, we sought to

compare the performance of three regression methods (single-locus

regression, traditional multiple linear regression, and ridge regres-

sion) in settings involving multiple SNPs in LD for which only

some subset are causally associated with a continuous phenotype.

Second, we investigated the effect of the LD strength between

two SNP loci on the performance of each regression method for dif-

ferentiating the causal association between one of the SNPs and the

phenotype from the SNP in LD with that causal SNP. All the calcu-

lations and analyses were programmed and implemented in R ver-

sion 2.4.1 and Python version 2.3.5. For the first simulation studies
erican Journal of Human Genetics 82, 375–385, February 2008 377



Figure 1. Haploview Plot of 26 SNPs in the CHI3L2 Gene
Haploview (versions 3.32) plot of the pairwise linkage disequilibrium among the 26 loci within the CHI3L2 gene region as obtained from
the International HapMap Project database.
that did not involve the CHI3L2 gene, we assumed sample sizes of

either 100 or 500. We also considered a genomic region with 20 bial-

lelic loci within it, with the number of functional loci influencing

a continuous phenotype ranging from 1–19, with the allele-specific

effect size at the functional loci equal to either 0.5 or 1.0 phenotypic

SD units. We generated linkage disequilibrium among the loci by

fixing the frequency of the different haplotypes that could be con-

structed from the 20 loci. Thus, if many haplotypes are assumed to

have a frequency of 0.0, this would create strong LD between the

loci. We assumed all simulated loci had two alleles, coded as

0 and 1. For each person, two genotypes were randomly generated

by random sampling from the subset of haplotypes according to

their frequencies.

It should be understood that generating multiple (i.e., >3) SNP

loci with fixed prior-specified LD strengths between and allele fre-

quencies on the basis of a simple analytic formula is not trivial. In

addition, there are an infinite number of possible situations that

we could have explored in terms of allele frequencies and LD

strengths. We chose to concentrate on situations for which there

was moderate to strong LD among the loci as quantified by the

D’ measure of LD. We ultimately simulated SNP data by assuming

that 14 of the 220 possible haplotypes had frequencies >0.0 with

individual frequencies of 0.32, 0.24, 0.33, and 0.01 for the 11 re-

maining haplotypes. Use of these frequencies creates strong

(D’> 0.55; but highly variable, over all the simulations) LD among

each pair of loci and varying allele frequencies, as described in

the Results section.
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Phenotypes were generated according to a standard normal dis-

tribution. To create associations between the phenotype and the

simulated SNPs, we increased individual phenotypes by a value

equal to an assumed ‘‘effect size’’ for each ‘‘1’’ allele an individual

has at a functional locus. In this setting, all, functional loci were

assumed to have effect of equal size. We generated 100 data sets

for each combination of the assumed number of subjects, number

of functional loci, and effect-size parameter. We ensured that

each functional locus did, in fact, have an effect in each simulate

data set by rejecting simulated data sets in which the locus was

monomorphic.

Ultimately, each of the three regression methods was applied to

each simulated data set. Thus, for the single-locus analyses and

the ridge-regression analyses, we obtained 100 p values for each

of the 20 loci corresponding to the significance level of a test involv-

ing the relevant regression coefficient. However, for the multiple-

regression method, only the SNPs that could enter in the model

without causing a singularity were considered. Consequently, the

results of our simulations are biased toward more favorable results

for traditional multiple regression. Because the power of any one

technique may come at the expense of higher type I (a) error, we

chose to compare sensitivity (power, i.e., 1-probability of a type II

error) at a common specificity (i.e., 1-a, or 1-probability of a type

I error). Otherwise, the sensitivity of one method could be artifi-

cially higher than that of another because of its larger a level. Be-

cause we were unable to choose an appropriate a priori threshold

t that would result in a certain type I error over all the analysis
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Table 1. Regression Analysis Results for SNPs within the CHI3L2 Gene from the HapMap Gene Expression Data

SNP ID

Single Locus Analysis Multiple Regression Ridge Regression

Estimate SD Pr (>jtj) Estimate SD Pr (>jtj) Estimate SD P (>jtj)

Intercept 9.06 0.16 7.01E�51* 8.90 2.37 0.0005 2.61 0.34 1.20E�09*

rs755467 1.01 0.18 8.74E�07* 0.92 1.35 0.5002 1.11 0.31 8.32E�04*

rs2147790 �0.07 0.25 7.90E�01 0.36 0.49 0.4709 0.34 0.54 5.28E�01

rs2255089 �0.47 0.19 1.37E�02 0.15 1.38 0.9139 1.43 0.43 1.80E�03*

rs2274232 0.39 0.27 1.62E�01 0.62 0.61 0.3171 0.85 0.16 2.66E�06*

rs2147789 �0.38 0.17 3.30E�02 �0.05 0.39 0.9026 �0.01 0.44 9.84E�01

rs2182115 �0.51 0.28 6.75E�02 �0.26 0.38 0.4981 �0.24 0.42 5.80E�01

rs1325284 �0.86 0.19 3.97E�05* �1.89 1.18 0.1183 �0.09 0.14 5.04E�01

rs2251715 �0.47 0.19 1.44E�02 NA NA NA 0.75 0.19 2.21E�04*

rs961364 0.99 0.18 1.62E�06* 0.23 0.59 0.6949 0.28 0.64 6.58E�01

rs2764543 �0.86 0.19 3.97E�05* NA NA NA �0.09 0.14 5.04E�01

rs7366568 �0.69 0.25 6.79E�03 0.72 0.46 0.1262 0.69 0.51 1.86E�01

rs2820087 �0.76 0.20 4.54E�04* �0.23 0.44 0.602 �0.22 0.49 6.53E�01

rs6685226 �0.10 0.26 7.06E�01 �0.44 0.58 0.4472 �0.40 0.62 5.22E�01

rs11583210 �0.37 0.21 9.11E�02 0.23 1.27 0.8598 0.65 0.96 5.01E�01

rs12032329 0.39 0.27 1.62E�01 NA NA NA 0.85 0.16 2.66E�06*

rs2477578 �0.86 0.19 3.97E�05* NA NA NA �0.09 0.14 5.04E�01

rs2494006 �0.74 0.20 3.90E�04* 0.30 0.53 0.5760 0.26 0.59 6.59E�01

rs7542034 0.07 0.81 9.29E�01 0.21 0.84 0.8038 0.42 0.76 5.82E�01

rs942694 �0.78 0.19 1.47E�04* 0.88 0.84 0.3014 0.78 0.86 3.68E�01

rs942693 �0.86 0.19 3.97E�05* NA NA NA �0.09 0.14 5.04E�01

rs2182114 �0.86 0.19 3.97E�05* NA NA NA �0.09 0.14 5.04E�01

rs5003369 �0.86 0.19 3.97E�05* NA NA NA �0.09 0.14 5.04E�01

rs11102221 �0.34 0.21 1.15E�01 NA NA NA 2.68 0.75 9.12E�04*

rs3934922 0.94 0.18 3.11E�06* NA NA NA 1.79 0.35 6.76E�06*

rs3934923 �0.86 0.19 3.97E�05* NA NA NA �0.09 0.14 5.04�01

rs8535 1.01 0.18 8.74E�07* NA NA NA 1.11 0.31 8.32E�04*

The asterisks represent significant p values (<1.92E�03) at an overall 5% level with a Bonferroni correction. ‘‘NA’’ stands for not applicable (the multiple-

regression procedure could not fit the model with this SNP because of multicollinearity).
methods compared, we employed receiver operating characteristic

(ROC) curves to control for different a levels. Because results corre-

spond to p values, we varied the threshold t from 0 to 1 in steps of

0.0001 for a total of 1000 data points for each ROC curve.

Because the ‘‘true’’ number of functional loci in any realistic as-

sociation analysis is usually unknown a priori, we averaged the

ROC curves over the results obtained over the simulated data

sets containing various number of functional loci. For illustration

of how this was done, consider p values obtained from the simu-

lated data sets by applying one specific method (e.g., ridge regres-

sion) to each of the 100 replicates 3 19 data sets with varying

number of functional loci, for a small effect size (0.5) and 100 peo-

ple. For the first value of t, we calculated sensitivity and specificity.

Sensitivity is the proportion of the 19,000 p values corresponding

to the [(1þ 2þ 3þ.þ 19) 3 100] functional loci that are smaller

than t. Similarly, specificity is the proportion of the remaining

19,000 p values corresponding to the [(19 þ 18 þ 17 þ . þ 1)

3 100] nonfunctional loci that are greater than t. We recalculated

sensitivity and specificity for each value of t and obtained ROC

curves by plotting ‘‘sensitivity’’ against ‘‘1-specificity.’’

For the second simulation study, we again compared the three

analysis methods: single-locus regression analysis, standard multi-

ple regression analysis, and ridge regression. We set the sample size

to 100 subjects, the number of loci to two, and the number of func-

tional loci to one with an effect size of 0.5. Here, we constrained our

attention to the most difficult case for detecting an association, i.e.,

situations involving a small effect size and a small sample size, in

order to more easily distinguish the performance of each method

because it is easier for any method to detect associations when
The Am
only one locus is functional. Instead of choosing a number of differ-

ent haplotypes with fixed frequency, allele frequencies at the two

loci were randomly assigned according to a uniform distribution.

We generated 1,000,000 simulated data sets. For each set of simula-

tions, we recorded the theoretical and the empirical LD between the

two loci as well as the allele frequencies, and for each method, the p

value obtained from test statistics measuring the association be-

tween the loci and the simulated phenotype. The results were strat-

ified for different values of D’ and different allele frequencies, and

again ROC analyses were used. For each D’ and allele frequency

stratum, and for each of the 1000 threshold values of t, sensitivity

was calculated as the proportion of significant p values correspond-

ing to the functional locus, and specificity was calculated as the

proportion of nonsignificant p values corresponding to the non-

functional locus.

Results

Ridge Regression Applied to the CHI3L2 Region

We considered the association analysis of SNPs in the

CHI3L2 gene region and CHI3L3 gene expression as a phe-

notype as originally discussed by Cheung et al.26 and, more

recently, Wessel, Libiger, and Schork.24 We applied each

of the three aforementioned regression methods to the

26 SNPs within the CHI3L2 region. Figure 1 displays the

linkage disequilibrium between the loci and shows that

the majority of the pairs of SNPs are in strong linkage
erican Journal of Human Genetics 82, 375–385, February 2008 379



disequilibrium. Thus, it is not surprising that the results of

the use of traditional multiple linear regression suffered

from the multicolinearity problems and could fit only 11

of the 26 SNPs in a same model, thereby resulting in several

missing coefficient values and no significant p value (Table

1). Here, the choice of the SNPs that have entered the

model was based on the algorithm implemented in the R

software (version 2.4.1). Note that the application of a for-

ward stepwise procedure in which SNPs are entered into

a model in sequence in which the SNPs with the strongest

effect enter first, the SNP with the second strongest effect

given the effect of the first enters second, etc. In this case,

only three SNPs (rs755467, rs2274232, and rs2251715)

entered the model; thus, the majority of the SNPs are not

tested despite the fact that they might ultimately be causal

and functional and in LD with a SNP that entered into the

model.

On the basis of a conservative Bonferroni correction, the

single-locus analysis and the ridge regression, which al-

lowed testing of all 26 SNPs individually, 14 and eight

SNPs were significant, respectively, at an overall 5% level.

Among those, 11 and five SNPs were significant in one

method and not the other. Because the real effect of each

SNP (i.e., whether it is functional or not) is unknown in

this data set, we cannot tell whether this observed differ-

ence is due to higher type 1 error or lower power, for one

of the two methods, thus motivating our simulation study.

What we can say is that accounting for the LD among the

SNPs radically changed which of the SNPs is likely to be

causally associated with the CHI3L2 phenotype on the basis

of statistical analysis. Also, we want to emphasize the fact

that the results from the ridge regression depend on the

choice of the method used to estimate the ridge parameter

k. Figure 2 shows the ridge trace for the 26 coefficient esti-

Figure 2. The Ridge Trace Associated with Analysis of the
CHI3L2 SNPs
Each curve corresponds to the ridge regression coefficient estimate
for one of the 26 loci of the CHI3L2 region for varying value of the
ridge parameter k (x axis).
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mates for varying values of k (x axis). One could conceivably

use this type of graph to decide on the appropriate value of

k.10,19 We used the Hoerl, Kennard, and Baldwin22 method

for generating the value for k, which produced a k¼ 0.1215,

a full model with R2 ¼ 0.61, and an error sum of square of

26.93. However, we tried the ridge regression on the same

data set with varying values of k, and for each analysis,

the set of significant SNPs (i.e., ridge-regression coefficient

p< 0.0019) were the same (data not shown). The most im-

portant elements of Table 1 and Figure 2 concern not only

the change in the values of the coefficients, as well as their

significance levels, but also the change of sign for some of

the coefficients. This suggests that by not accommodating

LD in relevant association-analysis models, one might be

mistaken with respect to the actual effect of the alleles on

a phenotype.

We also pursued simulations that took advantage of the

real genotypes obtained on the 57 subjects, but used simu-

lated phenotypes whose associations with particular SNPs

were determined a priori, and applied the single-locus anal-

ysis and the ridge-regression methods to the resulting data

sets. Because we knew the ‘‘true’’ functional loci, we were

able to estimate sensitivity and specificity of each method

to identify those loci. Figure 3 demonstrates the higher per-

formance of the ridge-regression method in comparison to

the single-locus analysis. As mentioned in the Material and

Methods section, ROC curves were averaged among the

varying number of functional loci. For the different combi-

nations of sample size and effect size, ridge regression al-

ways performed best. As expected, the single-locus analysis

is unable to differentiate causal SNPs from those merely

correlated (i.e., in LD with) those causal SNPs.

Figure 3. ROC Curves Comparing the Performance of the
Single-Locus Analysis and the Ridge-Regression Methods
Each ROC curve represents the performance of one of the two re-
gression methods when trying to detect association between the
26 SNPs of the CHI3L2 region and a simulated phenotype (solid
line¼ single-locus regression; dashed line¼ ridge regression). Re-
sults are averaged among varying number (1–25) of functional loci.
y 2008



Figure 4. Haploview Plot of 20 SNPs Used in the Simulation Studies
Haploview (version 3.32) plot of the theoretical pairwise linkage disequilibrium among the 20 loci calculated from the respective frequen-
cies of the 14 haplotypes used in simulating the genotype data for the first component of our simulation studies. Dashed line indicates
ridge regression, dotted line indicates multiple linear regression, and solid line indicates single-locus analysis.
Simulation Study

Figure 4 depicts the theoretical LD strength between the loci

used to generate SNPs for the first component of our simu-

lation studies. The pairwise D’ values range from 0.57 to 1.0

with an arithmetic average of 0.85. Figure 5 provides the

average ROC curves over the simulations obtained for

each of the three analysis methods in differentiating causal

from noncausal SNPs. Figure 5 clearly shows that ridge re-

gression performs best when trying to differentiate causal

from noncausal associations between moderate to highly

correlated SNPs and a continuous phenotype. As men-

tioned in the Material and Methods section, ROC curves

were averaged over the various assumed number of func-

tional loci. For the different combinations of sample size

and effect size, ridge regression always performed best. As

expected, single-locus analysis is unable to differentiate

causal SNPs from those merely correlated (i.e., in LD) with

causal SNPs.

For the second component of our simulation studies, in

which two loci of varying LD strength were generated, one

of which was causally related to a trait, all the methods per-

formed reasonably well when there was little LD between

the SNP alleles, as expected, although ridge regression
The Am
performed best (Figures 6–8). We stratified the simulations

according to the frequency of the first locus as well as the

LD strength between the two loci and then averaged the

results to generate ROC curves. Figures 6, 7, and 8 show

results for the first locus allele frequencies of 0.25, 0.50,

and 0.75, respectively. In all cases, ridge regression per-

formed better in differentiating the causal locus from the

noncausal locus merely in LD with the causal locus. Sin-

gle-locus analysis is, as expected, the method most affected

by increasing LD strength in differentiating causal from

noncausal loci.

Discussion

Studies seeking to identify genetic variations that are likely

to influence common complex diseases via genetic-associa-

tion analysis will continue to grow as the cost of genotyping

technologies are reduced. However, ultimately differentiat-

ing ‘‘causal’’ variations from those variations merely in LD

with causal variations is not trivial in genetic-association-

study contexts, especially when extremely dense panels or

maps of markers are used, because the LD between the
erican Journal of Human Genetics 82, 375–385, February 2008 381



variations at those loci is likely to be strong. Although labo-

ratory assays can be used for assessing the likely functional

significance of particular variations—and hence provide

insight into the potential causal nature of the associations

involving certain SNPs—these assays can be costly and

time consuming, thereby making statistical methods for

Figure 5. ROC-Curve-Based Overall
Comparison of Analysis Methods
Each ROC curve represents the performance
of one of the three regression methods
when trying to detect association between
a set of 20 loci and a phenotype (solid
line¼ single-locus regression; dotted line¼
standard multiple regression; dashed line¼
ridge regression). Results are averaged
among varying number (1–19) of functional
loci. Dashed line indicates ridge regression,
dotted line indicates multiple linear regres-
sion, and solid line indicates single-locus
analysis.

Figure 6. ROC-Curve-Based Comparison
of Analysis Methods Based on an Allele
Frequency of 0.25
ROC curves comparing the performance of
three regression-based methods for associ-
ation analysis when the frequency of the
‘‘1’’ allele is 0.25. Each ROC curve represents
the performance of one of the three regres-
sion methods when trying to detect associ-
ation between a 2 loci (one functional and
one nonfunctional) and a phenotype (solid
line¼ single-locus regression; dotted line¼
standard multiple regression; dashed line ¼
ridge regression). The sample size was fixed
to 100 people, and the functional loci had
an effect of size 0.5. Dashed line indicates
ridge regression, dotted line indicates
multiple linear regression, and solid line
indicates single-locus analysis.

prioritizing variations for consider-

ation in such laboratory assays even

more valuable.

It should also be noted that virtu-

ally all of the recently published

GWA studies made use of single-

locus-based analyses. Single-locus-

based analyses, as shown by our

simulation studies, may lack the sta-

tistical sophistication to resolve

causal or functional from noncausal or nonfunctional

loci as well as to detect multiple-locus effects within a geno-

mic region, and this can lead both false-positive and false-

negative results. Many researchers have, in fact, taken ad-

vantage of two-stage designs28 to minimize false-positive

results. However, two-stage designs are expensive and
382 The American Journal of Human Genetics 82, 375–385, February 2008



time consuming because they require a second population

and retesting variations that, ultimately, may not be truly

associated with the phenotype of interest. In addition, be-

cause the actual number of false positives one can expect

in an association study is unknown a priori, it may be

the case that several causal SNPs will go undetected in an

initial study and hence not be investigated in a follow-up

study. Ultimately, then, analyzing (or even reanalyzing)

WGA data with a more powerful statistical tool such as

the ridge regression should increase the chance of finding

compelling associations that can be considered in

additional studies.

Figure 7. ROC-Curve-Based Comparison
of Analysis Methods Based on an Allele
Frequency of 0.50
ROC curves comparing the performance of
three regression-based methods for associ-
ation analysis when the frequency of the
‘‘1’’ allele is 0.50. Each ROC curve represents
the performance of one of the three regres-
sion methods when trying to detect asso-
ciation between a 2 loci (one functional
and one nonfunctional) and a phenotype
(solid line ¼ single-locus regression; dot-
ted line ¼ standard multiple regression;
dashed line ¼ ridge regression). The sam-
ple size was fixed to 100 people, and the
functional loci had an effect of size 0.5.
Dashed line indicates ridge regression,
dotted line indicates multiple linear re-
gression, and solid line indicates single-lo-
cus analysis.

Figure 8. ROC-Curve-Based Comparison
of Analysis Methods Based on an Allele
Frequency of 0.75
ROC curves comparing the performance of
three regression-based methods for associ-
ation analysis when the frequency of the ‘1’
allele is 0.75. Each ROC curve represents
the performance of one of the three regres-
sion methods when trying to detect asso-
ciation between a 2 loci (one functional
and one non-functional) and a phenotype
(solid line ¼ single locus regression; dot-
ted line ¼ standard multiple regression;
dashed line ¼ ridge regression). The sam-
ple size was fixed to 100 people, and the
functional loci had an effect of size 0.5.
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We have shown that ridge regression outperforms stan-

dard multiple regression and traditional single-locus-based

analyses in the identification of variations that are func-

tionally or causally related to a trait from those that are

merely in LD with those causal variants. Despite this, there

are a number of issues and possible ridge-regression exten-

sions that should be considered. First and foremost is the

issue of the choice of the ridge parameter, k. Although there

are many strategies for choosing an optimal value for k,

there is no consensus on the best or most general way to

choose k. In addition, it is possible to implement models

for which different values of k for each potential predictor

or independent (i.e., SNP) variable are used, although the

properties of such generalized ridge-regression procedures

have not been explored in full.29 We find that adding virtu-

ally any positive value of k in Equation 3 makes a difference

on the regression estimates. Obviously, more work in this

area is needed. In addition, we concentrated on situations

in which the phenotype of interest is continuous in nature,

but the ridge-regression approach can be applied in case-

control or dichotomous phenotype situations through the

use of ridge logistic regression.30 Despite these and other

even more obvious issues (such as assumptions of normality

and linearity in the gene-phenotype relationship), the ad-

vantages of accommodating LD in differentiating the

most likely causal variations from those that are merely cor-

related or in LD with the causal variations, the ability to

analyze many variations in a single model, computational

efficiency, and ease of interpretation of results clearly sug-

gest ridge regression could be great value to researchers pur-

suing dense-map, large-scale genetic-association studies.

As mentioned previously, one possible use of the pro-

posed ridge-regression procedure involves its application

in the basic analysis stages of WGA studies. Although it

may be theoretically possible to consider all SNPs simulta-

neously in a single analysis, we don’t recommend this and

rather believe that one could exploit a ‘‘moving-window’’

approach in which sets of adjacent SNPs are analyzed for

association simultaneously (unpublished data). Thus, for

example, one could consider a moving-window-based strat-

egy in which some number, l, of adjacent loci are used in the

analysis in order to test for associations between variations

at those l loci and the phenotype of interest. After this anal-

ysis is performed, the window is moved one locus away, and

the analysis is repeated. This is continued until the entire

genome is covered. Leveraging the independent effects of

multiple causal variations in a single genomic region could

increase the evidence that variations in that region are asso-

ciated with the phenotype of interest over single-locus anal-

yses. The choice of the window size is obviously arbitrary

but can be varied so that locus effects that appear to work

in aggregate or in isolation could be identified, thus allow-

ing for flexibility in the analysis. Because several loci are

tested in these situations, one should consider the use of

a multiple testing correction such as false discovery rate.

In the event that genome regions are identified that appear

to have variations within them that are associated with
384 The American Journal of Human Genetics 82, 375–385, Februar
a particular phenotype, one could analyze all the variations

across all these loci in a single model. Interaction and cova-

riate terms could also be incorporated because of the

flexibility of the regression model.

Other methods for accommodating correlations among

predictor variables in regression-analysis-like contexts

have been proposed. For example, partial least-squares anal-

ysis attempts to find variables that have high variance and

high correlation with particular independent variable;20

the ‘‘LASSO’’-based regression technique, which exploits

‘‘penalties’’ for terms that do not have predictive power in

the model relative to others could also be used,20 and gener-

alized estimating equations (or GEEs) models treat correla-

tions between variables as nuisance parameters to focus

attention on the ultimate relationships between a set of

sets of variables. A comparison of the power and utility of

these various methods with ridge regression in the context

of genetic-association studies involving variations in LD

would be of great value because our results suggest that ridge

regression provides a simple, flexible, and reliable method

for differentiating the most likely set of causal variations

from those variations that are merely in LD with those

causal variations.
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HapMap, www.hapmap.org

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.
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